
Program Feature-based Fuzzing Benchmarking
Miao Miao

Department of Computer Science
University of Texas at Dallas

Richardson, TX, USA
Email: mmiao@utdallas.edu

Abstract—Fuzzing is a powerful software testing technique
renowned for its effectiveness in identifying software vulnera-
bilities. Traditional fuzzing evaluations typically focus on over-
all fuzzer performance across a set of target programs, yet
few benchmarks consider how fine-grained program features
influence fuzzing effectiveness. To bridge this gap, we intro-
duce a novel benchmark designed to generate programs with
configurable, fine-grained program features to enhance fuzzing
evaluations. We reviewed 25 recent grey-box fuzzing studies,
extracting 7 program features related to control-flow and data-
flow that can impact fuzzer performance. Using these features,
we generated a benchmark consisting of 153 programs controlled
by 10 fine-grained configurable parameters. We evaluated 11
popular fuzzers using this benchmark. The results indicate that
fuzzer performance varies significantly based on the program
features and their strengths, highlighting the importance of
incorporating program characteristics into fuzzing evaluations.

Index Terms—fuzzing benchmarking, program features.

I. RESEARCH PROBLEM AND MOTIVATION

The evaluation of fuzz testing is usually conducted on a set
of target programs, focusing on the overall performance (e.g.,
bug finding capability and code coverage) after fuzzers run a
preset period of time. We observe that such evaluations often
reveal that different fuzzers tend to favor specific programs.
For instance, fuzzers’ performance often varies across different
target programs in the evaluations that use FuzzBench [1].
One of the reasons for such variation lies in the design of
any given fuzzer. For example, EcoFuzz’s advantage in reduc-
ing energy wastage and maximizing path coverage [2] may
become more pronounced as program complexity increases.
However, current evaluations do not consider program features
or analyze performance deviations in relation to those features.
Therefore, the research community has yet to establish a link
between fuzzing performance and program features; without
this link, it remains unknown if the hypotheses and claims
made in these fuzzers hold, making it hard to assess and further
improve them. To close this gap, we propose to develop a
feature-based fuzzing benchmark that systematically controls
the syntactic structure of programs. Our approach provides
fine-grained, configurable parameters to construct benchmark
programs that represent specific features of control-flow and
data-flow complexity, offering deeper insights into fuzzing
performance in terms of different program features.

II. BACKGROUND AND RELATED WORK

There are several important fuzzing benchmarks and are
widely used in fuzzing evaluation. FuzzBench [3] provides an

infrastructure to evaluate fuzzers in terms of code coverage
and vulnerability exposure. Magma [4] provides a bench-
mark of 138 ported bugs in 9 open source programs along
with the lightweight oracle (ground truth) that reports the
bug when triggered. There exist other benchmarks focus on
vulnerabilities in the programs (e.g., FixReverter [5], LAVA-
M [6], and CGC [7]). These benchmarks focus on bugs or
vulnerabilities in the programs but do not identify program
properties that can influence the performance of the fuzzer.
UNIFUZZ [8] proposes a collection of pragmatic perfor-
mance metrics to evaluate fuzzers from six complementary
perspectives. GreenBench [9] focuses on energy consumption
of fuzzing evaluations. Although these approaches bring new
dimensions to understand fuzzer performance, they still over-
look the influence of specific characteristics in target programs
that can impact fuzzer effectiveness. Wolff et al. [10] and
Zhu et al. [11] evaluated fuzzers based on program properties.
However, the program properties they proposed do not focus
on the systematic generation of programs using configurable
program features.

III. APPROACH

A. Feature Extraction

We reviewed 25 grey-box fuzzing papers that are published
within last three years, as well as the most cited fuzzers
from earlier years, and summarized the common hypotheses or
claims of improvements on fuzzing performance. Note that It
is not our goal to cover all published fuzzing papers. Instead,
we reviewed these popular fuzzing papers as a representative
set to extract important program features to construct the
benchmark. In total, we extracted 7 program features from two
aspects: control-flow complexity and data-flow complexity.

1) Control-Flow Complexity (15 papers): Defined by four
program features: number of conditional branches, execution
probability of conditional branches, loops and recursions and
loops and recursions with data constraints.

2) Data-Flow Complexity (10 papers): Defined by three
program features: magic bytes, checksum tests, and nested
magic bytes and checksum tests.

B. Benchmark Generation

We generate synthetic programs emphasizing specific fea-
tures with varying levels of strength to assess fuzzer per-
formance. We adjust control- and data-flow complexity by
stacking template blocks, and use fine-grained configurable



1

2 void COMP_W2_D2_ω2_B1(unsigned hash)
3 {if (hash < 2) { // A (nesting n=1)
4 if (hash < 1) { // B (nesting n=2)
5 PRINTF("This is branch 1\n");
6 ... // Inserting a bug here
7 } else {
8 PRINTF("This is branch 2\n");
9 }

10 } else {
11 if (hash < 3) { // C (nesting n=2)
12 PRINTF("This is branch 3\n");
13 } else {
14 PRINTF("This is branch 4\n");
15 ... // some code
16 }

(a) Program template

A

B C

b=1

branch 1
branch 2 branch 3

branch 4

w(=2)

w(=2) w(=2)

1
ω(=2) 1− 1

ω(=2)

1
ω(=2)

1− 1
ω(=2)

1
ω(=2)

1− 1
ω(=2)

d(=2)

(b) Control-flow graph
Fig. 1: Illustrative example of control-flow complexity param-
eters. Width, Depth, Weight, and BBranch are denoted
as w, d, ω, and b respectively.

parameters to control each feature’s strength. We crafted 10
configurable parameters and generated a total of 153 programs,
targeting 7 distinct program features.

1) Control-Flow Complexity.: We define six parameters
to manipulate the control-flow complexity of the programs.
Width, Depth, Weight, BBranch, are used to control the
number of conditional branches and the execution probability
of the buggy branch (as illustrated in Figure 1). Iteration
and Has_Data_Constraint, are used to control the gener-
ation of programs with bugs reside in a deep loop or recursive
call.

2) Data-Flow Complexity: We use four parameters to
define the data-flow complexity of the programs: Start,
Length, Depth, and Count, which defines the starting
index of the magic bytes, the number of involved magic
characters, the nesting level of conditions, and the number
of checksum tests, respectively.

IV. RESULTS AND CONTRIBUTIONS

We evaluate the performance of 11 fuzzers on our feature-
based benchmark suite. We report the completion rate, which
calculates the successfully completed programs within the
timeout to show how effectively each fuzzer supports specific
feature parameters. We also calculate the Spearman’s rank cor-
relation coefficient of each feature parameter and the fuzzing
runtime to analyze the impact of the strength of each parameter

TABLE I: COMD, COMW, and COMWE stand for Depth,
Width, and Weight of control-flow complexity. Spearman cor-
relation (corr) and completion rate (comp). RedQ stands for
RedQueen, Mem-S and -H stand for two variants (Stack and
Heap) of Memlock, and Tort-B and -L stand for two variants
(Basic Block and Loop) of TortoiseFuzz, Hongg stands for
Honggfuzz. Statically significant correlations are denoted with
an asterisk (*). Weak correlations (between -0.3 and 0.3) with
a 100% completion rate are highlighted in bold, and a hyphen
(-) indicates unavailable correlations due to insufficient data.

Fuzzer COMD COMW COMWE

corr comp corr comp corr comp

EcoFuzz 0.287* 1.00 -0.024 1.00 -0.237* 1.00
MOpt 0.662* 1.00 0.106 1.00 -0.192* 1.00
AFLFast 0.517* 1.00 0.010 1.00 -0.307* 1.00
Fairfuzz 0.513* 1.00 0.141* 1.00 -0.364* 1.00
RedQ 0.878* 1.00 - 0.06 -0.452* 1.00
Laf-intel 0.853* 0.75 0.333* 0.38 -0.291* 1.00
Mem-S 0.534* 1.00 0.154* 1.00 -0.228* 1.00
Mem-H 0.500* 1.00 0.177* 1.00 0.061 1.00
Tort-B 0.839* 1.00 0.253* 0.94 -0.474* 1.00
Tort-L 0.735* 0.88 0.044 0.50 -0.410* 1.00
AFL 0.640* 1.00 0.255* 1.00 -0.315* 1.00
AFL++ 0.894* 1.00 0.872* 1.00 -0.507* 1.00
Hongg 0.366* 1.00 0.013 0.94 -0.093 1.00

on the performance of different fuzzers. Table I shows the
partial results of control-flow complexity features parameters.

We made several observations on different features. For
example, Depth of control-flow complexity has a stronger
impact on the fuzzing performance than Width of control-
flow complexity. AFL++ is most sensitive to the increase
of control-flow complexity, while EcoFuzz is the least sen-
sitive. Our findings indicate that fuzzer performance varies
significantly based on program features and their strength.
Establishing a link between fuzzing performance and program
features can help developers assess and improve these fuzzers
for better effectiveness. Moving forward, we plan to perform
static analysis to extract additional program features from real-
world programs, and expand our benchmark to include features
representing a broader range of real-world scenarios.

Overall, we made the following contributions in this work:

• A literature review of 25 recent grey-box fuzzing papers
to extract 7 fine-grained program features from their
claimed improvements.

• A feature-based fuzzing benchmark with 153 programs
systematically generated using 10 configurable parame-
ters for the extracted program features.

• Evaluate 11 popular fuzzers on our feature-based bench-
mark to understand fuzzer behaviors and the impact of
each program parameter on their performance.

V. ACKNOWLEDGMENT

This work was partly supported by NSF grants CCF-
2008905 and CCF-2047682.



REFERENCES

[1] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM joint meeting on European software
engineering conference and symposium on the foundations of software
engineering, 2021, pp. 1393–1403.

[2] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou,
“{EcoFuzz}: Adaptive {Energy-Saving} greybox fuzzing as a variant
of the adversarial {Multi-Armed} bandit,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 2307–2324.

[3] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 1393–1403. [Online]. Available:
https://doi.org/10.1145/3468264.3473932

[4] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth
fuzzing benchmark,” Proc. ACM Meas. Anal. Comput. Syst., vol. 4,
no. 3, Nov. 2020. [Online]. Available: https://doi.org/10.1145/3428334

[5] Z. Zhang, Z. Patterson, M. Hicks, and S. Wei, “FIXREVERTER: A
realistic bug injection methodology for benchmarking fuzz testing,” in
31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 3699–3715. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-
zenong

[6] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnera-
bility addition,” in 2016 IEEE Symposium on Security and Privacy (SP),
2016, pp. 110–121.

[7] D. CGC, “Darpa cyber grand challenge (cgc),”
https://github.com/CyberGrandChallenge/, 2018.

[8] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng et al., “{UNIFUZZ}: A holistic and pragmatic
{Metrics-Driven} platform for evaluating fuzzers,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 2777–2794.

[9] J. Ounjai, V. Wüstholz, and M. Christakis, “Green fuzzer bench-
marking,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 1396–1406.

[10] D. Wolff, M. Böhme, and A. Roychoudhury, “Explainable fuzzer eval-
uation,” arXiv preprint arXiv:2212.09519, 2022.

[11] X. Zhu, X. Feng, T. Jiao, S. Wen, Y. Xiang, S. Camtepe, and J. Xue, “A
feature-oriented corpus for understanding, evaluating and improving fuzz
testing,” in Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, 2019, pp. 658–663.


