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Fuzzing is a powerful software testing technique renowned for its effectiveness in identifying software
vulnerabilities. Traditional fuzzing evaluations typically focus on overall fuzzer performance across a set
of target programs, yet few benchmarks consider how fine-grained program features influence fuzzing
effectiveness. To bridge this gap, we introduce FeatureBench, a novel benchmark designed to generate
programs with configurable, fine-grained program features to enhance fuzzing evaluations. We reviewed
25 recent grey-box fuzzing studies, extracting 7 program features related to control-flow and data-flow that
can impact fuzzer performance. Using these features, we generated a benchmark consisting of 153 programs
controlled by 10 fine-grained configurable parameters. We evaluated 11 fuzzers using this benchmark, with
each fuzzer representing either distinct claimed improvements or serving as a widely used baseline in fuzzing
evaluations. The results indicate that fuzzer performance varies significantly based on the program features and
their strengths, highlighting the importance of incorporating program characteristics into fuzzing evaluations.
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1 Introduction
Fuzzing, or fuzz testing, is a powerful testing technique renowned for its effectiveness in software
and system security testing. Numerous fuzzers have been proposed in recent years, each improving
different components of a given fuzzer. The evaluation of fuzzers is usually conducted on a set
of target programs, focusing on the overall performance (e.g., bugs found and coverage after the
preset timeout), compared to a set of baselines. We observe that such evaluations often reveal
that different fuzzers tend to favor specific programs. For instance, fuzzers’ performance varies
across different target programs in the evaluations that use FuzzBench (which uses code coverage
to rank fuzzers) [32]. One of the reasons for such variation lies in the design of the fuzzers. For
example, EcoFuzz [49] claims to implement an adaptive power schedule that reduces energy wastage
and maximizes path coverage within a finite execution time. Its claimed advantage may become
more pronounced as program complexity increases. However, current evaluations do not analyze
performance deviations in relation to program features. Therefore, it remains unknown if the
hypotheses made in these fuzzers hold, making it hard to assess and further improve them.
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1 void COMP_W2_D$Depth_ω2_B1(unsigned hash)
2 {if (hash < pow(2, $Depth-1})) {// level1
3 if (hash < pow(2, $Depth-2)) {// level2
4 ...
5 if (hash < 1) {// level$Depth
6 PRINTF("This is branch 1\n");

7 /* Insert a bug here */

8 } else {// level$Depth
9 PRINTF("This is branch 2\n");
10 }
11 ...
12 } else {// level1
13 if (hash < pow(2, $Depth)-pow(2, $Depth-2)) {// level2
14 ...
15 else {// level2
16 if (hash < pow(2, $Depth)-pow(2, $Depth-3)) {// level3
17 ...
18 if (hash < pow(2, $Depth)-pow(2, 0)) {// level$Depth
19 PRINTF("This is branch {pow(2, $Depth)-pow(2, 0)}\n");
20 ...
21 }

(a) Program skeleton.

Y

hash<512

......

Depth = 10
Width = 2
Weight = 2
BBranch = 1

Y N

hash<768
NY

hash<256

N

......

Y

hash<1

Y
N

hash<1023......

Y N

hash<3

Depth = 10

N

int *ptr = NULL; 
*ptr = 10;

End

Start

(b) Control-flow graph.

Fig. 1. Illustrative example of control-flow complexity parameters.

To close this gap, we propose to develop a novel program feature-based benchmark for fuzzing.
We first reviewed 25 existing grey-box fuzzing papers to summarize their claimed improvements.
We then extracted program features that describe the control-flow and data-flow complexity of
target programs. For example, a higher number of conditional branches increases the number
of possible execution paths within a program. As a result, fuzzers will likely need to traverse
more paths to reach the buggy code, thereby increasing the difficulty of generating bug-triggering
inputs. In total, we extracted 7 program features from the literature, including number of conditional
branches, execution probability of conditional branches, loops and recursions, data-constrained loops
and recursions, magic bytes, checksum tests, and nested magic bytes and checksum tests.

We then generated benchmarks based on these extracted programs features. The programs in our
benchmark are synthetically generated to provide a controlled environment for fuzzers and allow
us to better understand the impact of these features on the performance of different fuzzers, thereby
improving explainability of the observed fuzzing behaviors. We created configurable parameters
to control the complexity of programs in a fine-grained manner for each feature. For example,
four parameters (Width, Depth, Weight, BBranch) are created for the control-flow complexity
features. Width defines the number of branching paths from each if condition. Depth determines
the nesting level of conditional statements. Weight controls the probability of each conditional
branch being executed, and BBranch determines on which branch the bug is located. Figure 1(a)
illustrates the skeleton of programs with the default settings of Width (2), Weight (2), BBranch
(1), and a variable Depth. The branching paths from each if condition in these programs have
the same probability to be executed, and the bug always locates on the first branch. Figure 1(b)
demonstrates a control-flow graph of a program generated based on the skeleton in Figure 1(a),
with Depth set to 10 (see detailed discussion in Section 4.1). In total, we generated 153 programs
controlled by 10 parameters, targeting 7 distinct program features.
We evaluated 11 fuzzers using our benchmark, FeatureBench. We selected fuzzers that

represent the improvements fromwhich the program features implemented in FeatureBench are
extracted, and included additional popular fuzzers from FuzzBench [32]. With FeatureBench, we
perform correlation analysis and use data visualization to understand the impact of each parameter
on the performance of different fuzzers and reports the results on howwell each feature is supported
by these fuzzers. Our findings show that fuzzer performance varies significantly depending on the
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strength of program features. For example, RedQueen [2] performs well on programs with high
Depth but struggles with high Width. These findings highlight the importance of considering
program features in fuzzing evaluation. We made following contributions in this work:

• We perform a literature review of 25 recent grey-box fuzzing papers to extract 7 fine-grained
program features from their claimed improvements.

• We create a novel benchmark, FeatureBench, for evaluating fuzzers, that defines 10
configurable parameters for the extracted program features with 153 generated programs.

• We evaluate 11 popular fuzzers on FeatureBench to understand fuzzer behaviors and the
impact of each program parameter on their performance.

2 Motivation and Background
2.1 Motivating Example and Experiment
It has been a prevalent observation that different fuzzers’ ability to find bugs or achieve high code
coverage varies across different programs. In a sample report from FuzzBench [11] that ranks
results of 11 fuzzers on 20 target programs based on code coverage, Honggfuzz [12], LibFuzzer [28],
AFL++ [9], and MOpt [29] all have been ranked first on at least one target program. We replicated
part of the experiments in this sample report, where AFL++ [9] and Honggfuzz [12] exhibited
inconsistent rankings across different target programs. We ran these fuzzers on two target programs
(bloaty_fuzz_target and proj4_proj_crs_to_crs), executing each fuzzer on the target program for 24
hours across 5 iterations. In Figures 2(a) and 2(b), we observe that AFL++ outperformed Hongg-
fuzz on bloaty_fuzz_target, whereas Honggfuzz outperformed AFL++ on proj4_proj_crs_to_crs.
However, the reason that may have caused this inconsistency were not analyzed by FuzzBench.
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Fig. 2. FuzzBench (left two) vs. crafted program (right two) results on AFL++ and Honggfuzz.

Indeed, the design of a fuzzer may actually cause its varying performance across different
programs. To better understand the reason behind the performance differences, we assume that the
control-flow complexity of the target programmight be one of the factors. Based on this assumption,
we performed an experiment to compare AFL++ and Honggfuzz on two manually crafted programs,
COMP_W2_D12_𝜔2_B1 and COMP_W2_D16_𝜔2_B1. Figure 1 illustrates the skeleton of these
crafted programs, which are designed to have a control-flow graph that is a balanced tree with
Width of 2, a varying Depth, an equal probability of every branch being traversed, and the bug
located on the first branch. The two programs used in this experiment are generated based on this
skeleton, but with different Depth of 12 and 16, respectively (more details in Section 4).
In our experiment, we set both fuzzers to stop fuzzing once a bug is found, and compare the

running time it takes to find the bug. We fuzzed each program 20 times and calculated the average
runtime to account for randomness during fuzzing. In Figures 2(c) and 2(d), we observe that on
the smaller program (COMP_W2_D12_𝜔2_B1), Hongfuzz has a better performance than AFL++,
almost immediately finding the bug, while AFL++ took around 6 seconds to find the bug. However,
as the programs grow in depth, Honggfuzz clearly took longer time to find the bug on the larger
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programs (on average 2423 seconds for the program with the depth of 16), while AFL++’s runtime
remained relatively low (on average 6-15 seconds) in both program variants. This observation
confirms our assumption that control-flow complexity, specifically the Depth of the target program,
is one of the factors influencing the Honggfuzz’s performance. This promising result motivates
us to explore relevant program features and design benchmarking programs that help in better
understanding the performance differences of fuzzers across various program features.

2.2 Background
There exist several important fuzzing benchmarks. FuzzBench [32] provides an infrastructure to
evaluate fuzzers in terms of code coverage and vulnerability exposure, using real-world projects
from OSS-Fuzz [43]. Magma [13] provides a benchmark of 138 ported bugs in 9 open source
programs along with the lightweight oracle (ground truth) that reports the bug when triggered.
FixReverter [53] focuses on realism of bugs and aims at re-introducing a bug that was fixed before.
LAVA-M [7] injects an out-of-bounds access that is guarded by a "magic value" comparison whereas
CGC [5] contains small synthetic bugs: one bug per program. These benchmarks focus on bugs in
programs but do not explain performance differences across fuzzers on different target programs. As
shown in our motivating experiment, a benchmark such as FuzzBench may rank fuzzers based on
the coverage they reached within 24 hours on each target program but the reason behind the ranking
differences across target programs remains unexplained. Our benchmark aims to complement these
benchmarks and fill this gap by evaluating fuzzers on a set of benchmark programs with different
features and analyzing how the fuzzing performance is influenced by these features.
UNIFUZZ [26] proposes a collection of pragmatic performance metrics to evaluate fuzzers

from six complementary perspectives, as the authors believe using a single metric to assess the
performance of a fuzzer may lead to unilateral conclusions. GreenBench [34] focuses on energy
consumption of fuzzing evaluations. It creates thousands of benchmarks by using the existing
FuzzBench programs with diverse seed inputs and runs on these benchmarks for a short period of
time (i.e., minutes), and still generates accurate performance ranking results. Although these ap-
proaches bring new dimensions to understand fuzzer performance, they still overlook the influence
of specific characteristics in target programs that can impact fuzzer effectiveness.

3 Program Feature Extraction
We reviewed 25 grey-box fuzzing papers that are published within last three years, as well as
the most cited fuzzers from earlier years, and summarized the common hypotheses or claims of
improvements on fuzzing performance. It is not our goal to cover all published fuzzing papers.
Instead, we reviewed these popular fuzzing papers as a representative set to extract important
program features to construct the benchmark. Such a benchmark can be used to validate fuzzers’
claimed improvements and to understand performance differences of fuzzers across program
features. We extracted 7 features from two aspects: control-flow complexity and data-flow complexity.

3.1 Control-Flow Complexity
We reviewed 15 papers that discuss improvements associated with control-flow complexity of target
programs, defined by four program features: number of conditional branches, execution probability
of conditional branches, loops and recursions and loops and recursions with data constraints.
Number of conditional branches. We abstract a program as a control-flow graph, where

non-leaf nodes represent if-condition checks and outgoing edges represent possible branches.
When a program has more conditional branches, fuzzers will likely need to traverse more paths to
reach the buggy code. This creates a challenge for fuzzers to generate bug-triggering inputs. Papers
that propose enhancements to improve overall fuzzing efficiency handle the challenges posed by
this program feature. Fuzzers like EcoFuzz [49], MooFuzz [55], MobFuzz [51], and Slime [30] seek

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA024. Publication date: July 2025.



Program Feature-Based Benchmarking for Fuzz Testing ISSTA024:5

to improve fuzzing efficiency through smart energy allocation. MooFuzz claims that “reasonable
energy allocation can effectively improve the discovery of new paths” [55]. Fuzzers like MOpt [29],
Darwin [16], ShapFuzz [52], FairFuzz [24], SEAMFuzz [23], and MobFuzz [51] optimize mutators to
generate interesting test cases, that can trigger new paths or crashes more efficiently. One would
thus expect fuzzers with smart energy allocation and/or mutators to outperform those without
such advancements, especially in large programs where more conditional branches can be executed.
Such advantage shall be more pronounced as complexity of the program increases.

Execution probability of conditional branches. This feature refers to the likelihood of each
branch being executed. When a bug resides in a hard-to-reach region of the code, the low likelihood
of reaching that region poses challenges for fuzzers to generate inputs that can trigger the bug.
Fuzzers that prioritize seeds traversing infrequently executed paths seem more likely to effectively
handle the challenges. For example, AFLFast [3], FairFuzz [24], DigFuzz [54], and rare path guided
fuzzing [41] design special seed selection strategies and/or power schedules to increase the chances
of discovering bugs in the hard-to-reach regions of programs. AFLFast prioritizes seeds that traverse
infrequently executed paths [3], while FairFuzz identifies program branches that are rarely hit by
previously generated inputs and increases the likelihood of hitting these rare branches [24]. One
would expect fuzzers that optimize to prioritize seeds executing hard-to-reach code regions will
excel in programs where bugs are located in infrequently reached areas.

Loops and recursions. The presence of loops and recursions in a program can also be used to
measure control-flow complexity. TortoiseFuzz [46] claims that “loops are widely used for accessing
data and are closely related to memory errors such as overflow vulnerabilities.” It utilizes the
presence of loops to guide fuzzing process by only considering security-sensitive edges when
calculating coverage gain. PATA [27] implements path-aware taint analysis to distinguish between
multiple occurrences of the same variable, such as in loops or at different function call sites.
Memlock [47] studies an uncontrolled-recursion bug. The bug requires a sufficiently large recursive
depth which can lead to excessive memory consumption (i.e., stack/heap memory usage of the
target program when executing an input) to trigger a stack overflow crash. MemLock intentionally
keeps seeds that increase the peak length of call stack, and can finally triggering the stack overflow.
Loops and recursions with data constraints. Incorporating data-flow complexity in loops

and recursions provides a more comprehensive approach for designing benchmarks that assess
control-flow complexity. We extract another feature that measures the presence and depth of loops
and recursions while also considering data constraints that must be satisfied by the inputs.

3.2 Data-flow Complexity
We reviewed 10 papers proposing improvements that are associated with the data-flow complexity
of the target program. The complex data-flow conditions refer to hard-to-fulfill conditions along
the execution paths that guard certain regions of code where bugs might be located. We extracted
three program features: magic bytes, checksum tests, and nested magic bytes and checksum tests.
Magic bytes. Magic bytes are a sequence of bytes commonly used to validate the format of

a file or protocol, ensuring that the data conforms to the expected structure. These constructs
are hard to solve for feedback-driven fuzzers since they are very unlikely to guess a satisfying
input. Extensive research has been conducted to tackle such challenges. For example, Angora [6],
Steelix [25], Vuzzer [38], T-Fuzz [36], and Pangolin [15] employ techniques like taint tracking
and symbolic or concolic execution to bypass these roadblocks. There are lightweight techniques,
such as the input-to-state correspondence method proposed by RedQueen [2], the LLVM [22] passes
implemented by Laf-intel [21], as well as learning-based approaches like RNNfuzzer [37].
Checksum tests. Another type of data-flow complexity is checksum tests, which are often

used in network programs to detect data corruption. TaintScope [45] and T-Fuzz [36] remove the
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Table 1. FeatureBench features, parameters, settings, and number of programs.

Category Feature Parameter Settings # of Programs Total

Control-Flow

Number of conditional
branches

Width {32,48,64...256} 16 (COMW)

103

Depth {2,4,6...16} 8 (COMD)
Execution probability
of conditional branches

BBranch {1,32,64...1024} 32 (COMB)
Weight {2,3,4...8} 7 (COMWE)

Loops and recursions Iteration
Has_Data_Constraint

{5,10,50,100...100000}
{False}

10 (LOOPI)
10 (RECURI)

Loops and recursions
with data constraints

{50,100,150...500}
{True}

10 (LOOPDI)
10 (RECURDI)

Data-Flow

Magic bytes Start {0,10,20...90} 10 (MAGICS)

50
Length {1,2,3...10} 10 (MAGICL)

Checksum tests Count {1,2,3...10} 10 (CHECKSUMC)
Nested magic bytes
and checksum tests Depth {1,2,3...10} 10 (MAGICD)

{1,2,3...10} 10 (CHECKSUMD)

Total 153

checksum tests from the target program and seek to fulfill them later. They detect critical checks
automatically, and then use symbolic execution to fulfill the checks once interesting behavior was
found, while RedQueen [2] uses the input-to-state correspondence method to bypass checksum tests.

Nested magic bytes and checksum tests. Some bugs are protected by a chain of hard-to-fulfill
checks, such as nested magic bytes and checksum tests. These bugs are particularly challenging to
trigger because they are located deep within the code, and fuzzers must satisfy multiple conditions
to reach the buggy code. Fuzzers such as RedQueen [2], Laf-intel [21], Angora [6], Vuzzer [38], and
RNNFuzzer [37] are also designed to excel at resolving such nested conditions.
4 Benchmark Generation
To construct a program feature-based benchmark, we generate synthetic programs emphasizing
specific features with varying levels of strength to assess fuzzer performance. We adjust control- and
data-flow complexity by stacking template blocks, and use fine-grained configurable parameters to
control each feature’s strength. This allows us to observe the trend of fuzzer performance in relation
to incremental changes in each program feature. Each program includes a single injected bug,
allowing us to measure the time each fuzzer takes to trigger the bug. Table 1 shows an overview
of our benchmark, FeatureBench. In summary, we crafted 10 configurable parameters and
generated a total of 153 programs, targeting 7 distinct program features.
4.1 Control-Flow Complexity
To manipulate the control-flow complexity of programs with a finer granularity, we define six
parameters: Width, Depth, Weight, BBranch, Iteration, and Has_Data_Constraint.
Number of conditional branches. Figure 1 (see Section 1) and Figure 3 demonstrate the

program skeletons (1(a) and 3(a)) and control-flow graphs (1(b) and 3(c)) of the programs generated
for Depth and Width parameters. These parameters are used to quantify the horizontal and
vertical complexities of the graph, with Width controlling the number of branches from each if
condition and Depth representing the nesting level. Each if condition has the same number of
outgoing branches, making the control-flow graph a balanced tree. This structure ensures that
each branch yields equal code coverage, so that the probability of executing any given conditional
branch is controlled by the Weight parameter, which will be discussed later.

In Figure 1(a), parameters Depth, Width, Weight and BBranch are denoted as D, W, 𝜔 and
B, respectively. The programs generated for Depth parameter have a variable Depth, while other
parameters are set to default values (Width (2), Weight (2) and BBranch (1)). When Depth
grows, the nesting level of if conditions increases as illustrated in Figure 1(a) (e.g., lines 2-8 and
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lines 12-18), which results in a deeper control-flow graph. The constraints for each if condition are
calculated as hash < 2Depth−Level or hash < 2Depth − 2Depth−Level as shown in the program
skeleton, where Level is the nesting level of the if condition. We generated 8 programs for
Depth parameter by varying it from 2 to 16 in increments of 2. We grouped these programs under
the COMD folder in FeatureBench [33]. These parameter settings were decided empirically.
For example, we chose 16 as the maximum setting for Depth to avoid generating too complex
programs that may lead to excessive total possible paths (216 = 65, 536) and long compilation time
(more than 1 hour). Figure 1(b) shows the control-flow graph of a program from the COMD group,
with Depth set to 10, yielding 210 = 1024 possible paths.

The programs generated for the Width parameter have a variable Width, while other parame-
ters are set to default values (Depth (2) and BBranch (1)), shown in Figure 3(a). Note that for
programs with a Width greater than 2, the Weight parameter is not considered, and we ensure
that each conditional branch has an equal probability of execution. As the Width parameter grows,
the number of branches from each if condition increases, as shown in Figure 3(a) (e.g., lines
3-8), which results in a wider control-flow graph. For the first nesting level, the constraints for
each if condition are calculated as hash < Width × N, where N represents the Nth conditional
branch at current nesting level. For the second nesting level, the constraints are calculated as
hash < Width×(N-1) +M, where N-1 represents the N-1th conditional branch at first nesting
level and M represents the Mth conditional branch at the second nesting level. We generated 16
programs for the Width parameter by varying it from 32 to 256 in increments of 16, and grouped
them under the COMW folder in FeatureBench [33]. The total number of possible paths of the
largest program for the Width parameter is also 65,536 (2562). Figure 3(c) shows a control-flow
graph from the COMW group, with Width set to 32, yielding 322 = 1024 possible paths.
The larger the Width and Depth, the more possible paths the fuzzer may need to traverse to

reach the buggy code. These programs use the hash variable to determine the execution flow. This
variable is calculated by summing the hash values of each character in a fuzzing mutant, dividing
by WidthDepth, and taking the remainder, which determines the executed branch. Each program
contains a bug caused by a null pointer dereference, leading to a crash when executed. The location
of the injected bug is controlled by the BBranch parameter, which determines the branch where
the bug will be injected. Figure 1(a) (line 7) and Figure 3(a) (line 5) show the placeholders for bug
injection. For programs generated with Depth and Width parameters, the bug is always injected
into the first branch to minimize the impact of bug location on the probability of triggering the
bug. Figure 1(b) and Figure 3(c) illustrate the specific bug being injected into the first branch.
Execution probability of conditional branches. Figures 3(b) and 3(d) demonstrate the pro-

gram skeletons and control-flow graph of the programs generate for the Weight parameter.
Weight parameter controls the probability of each conditional branch being executed, denoted as
𝜔 in Figure 3(b). Note that Weight parameter does not equate to the probability of the branch being
executed, which can be calculated as 1

WeightDepth
. The expectation is that the lower the probability

is, for the fuzzers without any smart strategy, the less likely the bug branch will be triggered.
In Figure 3(b), the generated programs have a variable Weight, while Width, Depth, and

BBranch are set to 2, 10, and 1. We manipulate the number that hash is compared to in each if
condition to control execution probability of each branch. For each nesting level, the constraints
for if conditions are calculated as hash < WeightDepth−Level or hash < WeightDepth −
WeightDepth−Level×Weight-1Level. We generated 7 programs for Weight by varying it from
2 to 8 in increments of 1. These programs are grouped underCOMWE folder inFeatureBench [33].
Figure 3(d) shows the control-flow graph of a program from the COMWE group, with Weight
set to 3. The probability of each True branch (denoted as Y) being executed is 1

Weight = 1
3 , while
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1 void COMP_W$Width_D2_B1(unsigned hash)
2 {if (hash < $Width*1) {// level1
3 if (hash < 1) {// level2
4 PRINTF("This is branch 1\n");

5 /* Insert a bug here */

6 } else if (hash < 2) {// level2 ...
7 ...
8 } else if (hash < $Width) {// level2
9 PRINTF("This is branch $Width\n");
10 }
11 } else if (hash < $Width*2) {// level1
12 ...
13 } else if (hash < $Width*$Width) {// level1
14 if (hash < $Width*($Width-1)+1) {// level2
15 PRINTF("Branch $Width*($Width-1)+1\n");
16 ...
17 } else if {hash < $Width*($Width-1)+$Width} {
18 ... // level2

(a) Program skeleton (COMW).

1 void COMP_W2_D10_ω$Weight_B1(unsigned hash)
2 {if (hash < pow($Weight, 9})) {// level1
3 if (hash < pow($Weight, 8)) {// level2
4 ...
5 if (hash < 1) {// level10
6 PRINTF("This is branch 1\n");

7 /* Insert a bug here */

8 } else {// level1
9 if (hash < pow($Weight, 10)-pow($Weight, 8)*
10 pow($Weight-1, 2)) {// level2
11 ...
12 else {// level2
13 if (hash < pow($Weight, 10)-pow($Weight, 7)
14 *pow($Weight-1, 3)) {// level3
15 ...
16 if (hash<pow($Weight,10)-pow($Weight,0)
17 *pow($Weight-1, 10)) {// level10
18 ...

(b) Program skeleton (COMWE).
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(e) CFG (COMB).

Fig. 3. Program skeletons and control-flow graphs for control-flow complexity features (I).

the probability of each False branch (denoted as N) is 1 − 1
Weight = 2

3 . The probability of buggy
branch being traversed is 1

WeightDepth
, which is 1

310 in this case.
The BBranch parameter determines on which branch the bug is located, which is another factor

influencing the probability of reaching the buggy code. The skeleton of programs with the varying
BBranch parameter is same as the one shown in Figure 1(a), except that BBranch parameter
can be configured to any positive integer not larger than WeightDepth, and Width, Depth, and
Weight are set to default values 2, 10, and 2, respectively. We generated 32 programs for the
BBranch parameter by varying it from 1 to 1024 in increments of 32, grouped under the COMB
folder in FeatureBench [33]. Figure 3(e) shows the control-flow graph of a program from the
COMB group, with parameter BBranch set to 1024.
Loops and recursions. The parameter Iteration controls the number of the iterations of

loops and recursions. Each program has a bug injected, guarded by the loop or recursive call, which
can only be triggered when the iteration count reaches a specific value. Additionally, we incorporate
data-flow complexity into this feature by adding data constraint checks before reaching the buggy
code, to increase the difficulty of these test cases. The binary parameter Has_Data_Constraint
controls whether the data constraints are incorporated into the program. Figure 4(a) demonstrates
the skeleton when the bug is injected within a loop. The variable data is the fuzzing input
and size represents the length of the input. The program checks if the current loop iteration
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1 void LOOP_I$Iteration
2 (unsigned char *data,
3 long size) {
4 for (unsigned int i = 0;
5 i < size; i++) {

6 if (data[i] == $MAGIC) {

7 if (i == $Iteration) {

8 /* Insert a bug here */

9 }

10 } else { break; } }}

(a) Program skeleton (LOOP).

1 void RECUR_I$Iteration
2 (unsigned char *data,
3 long size, int i)

4 { if (data[i] == $MAGIC) {

5 if (i == $Iteration) {

6 /* Insert a bug here */

7 }
8 RECUR_I$Iteration

9 (data, size, i + 1); } }

(b) Program skeleton (RECUR).

Y

data[i] == 'a'
...

Exists when 
Has_Data_Constraint = True

Iteration = 500
Has_Data_Constraint = True

Y

N

i == 500

i < size

N

i++

Iteration reaches 500
int *ptr = NULL; 

*ptr = 10;

End

Start

(c) CFG (LOOPDI).

Fig. 4. Program skeletons and control-flow graphs for control-flow complexity features (II).

i equates to the Iteration parameter (line 7), and if so, the bug is triggered (line 8). The
presence of the if check highlighted in green (line 6) is controlled by the boolean parameter
Has_Data_Constraint. MAGIC is a randomly generated character that must appear in the
fuzzing input to meet this constraint. Specifically, when Has_Data_Constraint is on, the
input must contain a sequence of consecutive Iteration characters of MAGIC to pass the check.
Figure 4(b) shows the recursive version of the program, controlled by the same parameters.
For both types loop and recursion, we started with 5 and 10, and multiply by orders of 10, up

to 50,000 and 100,000, as the settings for Iteration, resulting in 20 (10+10) programs. These
programs are grouped under LOOPI and RECURI folders in FeatureBench [33]. We chose values
in the multiplication of order of 10 to create a significant gap in memory consumption between
programs, allowing us to better distinguish the performance of fuzzers. The upper bound for
Iteration is set to 100,000, as most fuzzers have reached their limits by this point. For the
data-constrained variants discussed above, we set Iteration from 50 to 500 in increments of 50,
resulting in another 20 (10+10) programs. These programs are grouped under LOOPDI and RECURDI
folders in FeatureBench [33]. We chose significantly lower upper bounds for these programs
because the data constraint checks significantly increase the difficulty of triggering the bug. Figure
4(c) shows the control-flow graph of a program from LOOPDI group, with Iteration set to 500
and Has_Data_Constraint enabled. The injected bug in the loop can only be triggered when
the loop iteration count reaches 500 and the input contains 500 consecutive magic characters.

4.2 Data-Flow Complexity
We define the data-flow complexity with four parameters: Start, Length, Depth, and Count.

Magic bytes. The Start and Length parameters are used for generating magic bytes. The
magic bytes condition checks if a sequence of characters in the input matches the magic string/char-
acter defined in the condition. Start defines the starting index of magic bytes in the input, while
Length defines the number of magic characters involved to satisfy the condition. Figure 5(a)
shows the skeleton where bug is guarded by a magic byte condition. The program checks if the
fuzzing input contains a magic string/character that starts at index Start and has a length of
Length (lines 3-4). The Depth parameter is set to 1 in this case, meaning that only one level
of condition needs to be satisfied. The MAGIC_BYTES is a randomly generated string of length
Length that must appear in the fuzzing input in order to meet this condition.
To create programs that test the impact of the starting index, we set Length to 1 to avoid the

impact of String length on the fuzzing performance, and vary Start from 0 to 90 in increments of
10, which results in 10 programs that are grouped under theMAGICS folder inFeatureBench [33].
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1 void MAGIC_S$Start_L$Length_D1
2 (unsigned char *data, long size)
3 {if (strncmp((char *)(data+$Start),
4 $MAGIC_BYTES , $Length) == 0)
5 { ...

6 /* Insert a bug here */ }

(a) Skeleton (MAGICS/MAGICL).

1 void CHECKSUM_C$Count_D1
2 (unsigned char *data, long size)
3 {if ($CHECKSUM_TEST1 &&
4 $CHECKSUM_TEST2 &&
5 $CHECKSUM_TEST3) {// C=3
6 ...

7 /* Insert a bug here */ }

(b) Skeleton (CHECKSUMC).

1 void MAGIC_S0_L1_D$Depth
2 (unsigned char *data, long size)
3 {if ((data[0]) == $MAGIC1) {
4 if ((data[1]) == $MAGIC2) {
5 if ((data[$Depth-1]) ==

$MAGIC3) {// D=3

6 ... /* Insert a bug here */ }

(c) Skeleton (MAGICD).

Start = 10
Length = 1
Depth = 1

N

data[10] == '<'

Y

Start = 10

int *ptr = NULL; 
*ptr = 10;

End

Start

(d) CFG (MAGICS).

Length = 5
Start = 0
Depth = 1

N

strncmp((char *)
 (data+0), "<!ATT", 5) == 0

Y

Length = 5
int *ptr = NULL; 

*ptr = 10; End

Start

(e) CFG (MAGICL).

Count = 3
Depth = 1

N

(u64(data) == sum(data+8, 8))
&& (u32(data+16) == u32(data+20))
&& (sum(data+24, 2) == u16(data+26))

YCount = 3

int *ptr = NULL; 
*ptr = 10;

End

Start

(f) CFG (CHECKSUMC).

Depth = 3
Start = 10
Length = 1

Y

Depth = 3

Y

N

data[0] == '<'

Y

N

data[1] == '&'

N

data[2] == '*'

int *ptr = NULL; 
*ptr = 10;

End

Start

(g) CFG (MAGICD).

Fig. 5. Program skeletons and control-flow graphs for data-flow complexity features.

We also set Start to 0 and vary Length from 1 to 10 in increments of 1, which results in another
10 programs that are grouped under theMAGICL folder in FeatureBench [33]. Figure 5(d) shows
a control-flow graph of a program from the MAGICS group, with Start set to 10 and Length
set to default value 1. data[10] is compared to the magic character < to guard the buggy code.
Figure 5(e) shows a control-flow graph of a program from the MAGICL group with Length set to
5 and Start set to default value 0. strncmp((char *)(data+0), "<!ATT", 5) == 0
compares the first 5 characters of the input to the magic string <!ATT to guard the buggy code.

Checksum tests. Count parameter defines the number of checksum tests that guard the buggy
code. The checksum tests validate if certain characters of the input satify the predefined checksum
tests. We use the logical-AND (&&) operator to combine multiple tests in a single if check. Figure
5(b) shows the program skeleton where the bug is guarded by three checksum tests (lines 3-5) and
Figure 5(f) shows the corresponding control-flow graph. In this program, all three conditions need
to be satisfied to reach the buggy code (line 7). Depth is fixed to 1, meaning that only one level
of condition needs to be satisfied. Each CHECKSUM_TEST is a manually crafted checksum test
that defines a specific data constraint. For example, (average(data, 4) == sum(data+4,
8)) checks whether the average of the first 4 bytes of the input data is equal to the sum of the
next 4 bytes. The character ranges in the fuzzing input checked by each CHECKSUM_TEST do not
overlap, ensuring that no conflicting constraints will occur. In total, we generated 10 checksum
tests to use as the CHECKSUM_TEST in program templates with Count ranging from 1 to 10 in
increments of 1. Each checksum test applies one of several operations, such as sum, average and
product on 2, 4, or 8 bytes of fuzzing input, creating constraints through combinations of these
operations. These programs are grouped under CHECKSUMC folder in FeatureBench [33].
Nested magic bytes and checksum tests. The Depth parameter is used for generating the

nested magic bytes and checksum tests. Figure 5(c) shows the program skeletons of nested magic
bytes. The skeleton of nested checksum tests shares the same structure as nested magic bytes except
that the magic bytes checks are replaced with checksum tests. For demonstration purpose, we set
Depth to 3, meaning that three nested conditions are defined to guard the buggy code. MAGIC1,
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MAGIC2, and MAGIC3 in Figure 5(c) are randomly generated characters that must appear in the
fuzzing input at the index of 0, 1, ..., and Depth-1, respectively (lines 3-5). Start and Length
are fixed to 0 and 1, respectively, meaning that the magic bytes are expected to start from the
beginning of the input and only one character is checked for each magic byte condition. This
minimizes the impact of these parameters on the fuzzing performance, allowing us to focus on the
effect of only the nesting depth. We vary Depth from 1 to 10 in increments of 1 for both types,
which results in 10 programs each. We group these programs under theMAGICD and CHECKSUMD
folders in FeatureBench [33]. Figure 5(g) shows the control-flow graph of a program from the
MAGICD group, with Depth set to 3. data[0], data[1], and data[2] are compared to the
magic characters <, &, and *, respectively, to guard the buggy code.
5 Evaluation
5.1 Experimental Setup
Fuzzer selection. We choose 11 fuzzers that represent the improvements from which the program
features implemented in FeatureBench are extracted and/or are popular grey-box fuzzers. (1)
Number of conditional branches: EcoFuzz (Eco) [49] and MOpt [29] represent fuzzers that improve
efficiency through smart strategies. (2) Execution probability of conditional branches: AFLFast [3]
and FairFuzz (Fair) [24] are designed to prioritize seeds that cover infrequent code regions. (3)
Loops and recursions (with data constraints): TortoiseFuzz (Tort) [46] and Memlock (Mem) [47] are
memory information-guided fuzzers that are expected to be sensitive to vulnerable control-flow
structures such as loops and recursions. For TortoiseFuzz, we experiment with two of its coverage
metrics, bb (Tort-B) and loop (Tort-L). The bb metric counts the security-sensitive edges at the
basic block granularity, and the loop metric counts the security-sensitive edges based on if it is a
back edge. For Memlock, we run both of its variants, stack (Mem-S) and heap (Mem-H), which
utilize the stack memory usage and heap memory usage to guide the fuzzing process, respectively.
(4) (Nested) magic bytes and checksum tests: RedQueen (Red) [2] and Laf-intel (Laf) [21] are
designed to handle complicated hard checks such as magic bytes and checksum tests. (5) Finally, we
include popular coverage-guided fuzzers from FuzzBench [32]: AFL [50], AFL++ [9], and Honggfuzz
(Hong) [12]. These fuzzers are frequently used as baselines in fuzzing evaluations [26, 32, 49, 51, 55].

Metrics. In our experiments, we set fuzzers to stop fuzzing once the injected bug is found, and
collect the running time of each fuzzer to trigger the crash. We ran each fuzzer on each benchmark
program with a 2-hour timeout and for 20 repeated trials. The 2-hour timeout is sufficient because
the programs generated in FeatureBench are relatively simple, and most fuzzing trials can
complete, i.e., find the bug, within seconds or minutes. Those that time out after 2 hours would
clearly indicate that the fuzzer does not handle the corresponding feature effectively. Therefore, we
report the completion rate to show how effectively each fuzzer supports specific feature parameters.
The completion rate is calculated as the ratio of successfully completed programs (that do not time
out) w.r.t. the total number of programs under the feature parameter. A completion rate of 1.0
indicates that the fuzzer was able to find the bug in all the programs with that specific parameter.

We also calculate the Spearman’s rank correlation coefficient [44] of each feature parameter (except
for BBranch) and the fuzzing runtime to analyze the impact of the strength of each parameter
on the performance of different fuzzers. Spearman’s correlation is a nonparametric measure of
the strength and direction of association between two ranked variables. Spearman’s correlation
coefficient assesses how well the relationship between two variables can be described using a
monotonic function, calculated as 𝑟𝑠 = 1− 6

∑
𝑑2
𝑖

𝑛 (𝑛2−1) where 𝑑𝑖 is the difference between ranks for each
pair of observations, and 𝑛 is the total number of observations [44]. The value of 𝑟𝑠 ranges from -1
to 1, where 1 indicates a perfect positive correlation, -1 indicates a perfect negative correlation, and
0 indicates no correlation. When we analyze the results, we consider the correlations above the 0.7
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Table 2. Spearman correlation and completion rate for control-flow complexity features.

Fuzzer COMD COMW COMWE COMB LOOPI LOOPDI RECURI RECURDI

corr comp corr comp corr comp corr comp corr comp corr comp corr comp corr comp

Eco 0.287* 1.00 -0.024 1.00 -0.237* 1.00 - 1.00 0.895* 0.90 0.712* 1.00 0.857* 1.00 0.653* 1.00
MOpt 0.662* 1.00 0.106 1.00 -0.192* 1.00 - 1.00 0.926* 1.00 0.663* 1.00 0.895* 1.00 0.630* 1.00
AFLFast 0.517* 1.00 0.010 1.00 -0.307* 1.00 - 1.00 0.027 0.50 0.768* 0.80 0.358* 0.50 0.806* 0.20
Fair 0.513* 1.00 0.141* 1.00 -0.364* 1.00 - 1.00 0.896* 0.80 0.762* 1.00 0.895* 0.80 0.705* 1.00
Red 0.878* 1.00 - 0.06 -0.452* 1.00 - 1.00 0.074 1.00 0.054 1.00 0.151* 1.00 0.023 1.00
Laf 0.853* 0.75 0.333* 0.38 -0.291* 1.00 - 1.00 0.106 1.00 0.068 1.00 0.184* 1.00 0.038 1.00
Mem-S 0.534* 1.00 0.154* 1.00 -0.228* 1.00 - 1.00 0.875* 1.00 0.533* 1.00 0.827* 0.90 0.522* 1.00
Mem-H 0.500* 1.00 0.177* 1.00 0.061 1.00 - 1.00 0.879* 1.00 0.541* 1.00 0.880* 1.00 0.428* 1.00
Tort-B 0.839* 1.00 0.253* 0.94 -0.474* 1.00 - 1.00 0.918* 1.00 0.525* 1.00 0.898* 0.90 0.552* 1.00
Tort-L 0.735* 0.88 0.044 0.50 -0.410* 1.00 - 1.00 -0.109 0.20 0.494* 1.00 -0.116 0.20 0.525* 1.00
AFL 0.640* 1.00 0.255* 1.00 -0.315* 1.00 - 1.00 0.923* 1.00 0.754* 1.00 0.882* 1.00 0.681* 1.00
AFL++ 0.894* 1.00 0.872* 1.00 -0.507* 1.00 - 1.00 -0.140 0.20 0.563* 1.00 0.000 0.20 0.562* 1.00
Hongg 0.366* 1.00 0.013 0.94 -0.093 1.00 - 1.00 0.325* 0.70 0.213* 0.70 0.212* 0.70 0.187 1.00

threshold as strong, while those below 0.3 as weak. This correlation analysis is appropriate to use
because for all feature parameters, except for BBranch, the increase of their absolute values means
an increase of the strength of the corresponding features. Therefore, a stronger positive correlation
means that the fuzzer’s performance gets worse as the strength of the feature parameter increases
(e.g., a fuzzer takes longer time to find a bug when this bug is injected in a deeper recursion). And
a stronger negative correlation indicates that the fuzzer’s performance gets worse as the strength
of the feature parameter decreases.

For the BBranch parameter, we perform the Mann-Whitney U Test [31] for each fuzzer to analyze
the statistical significance of the differences in the runtime of fuzzers on programs with different
bug locations. The Mann-Whitney U test is a nonparametric test used to assess whether there is
a significant difference between the distributions of two independent samples. We calculate the
p-value for each program pair to determine if the differences in runtime are statistically significant
(less than 0.05). The results are visualized in a heatmap.

Research questions. We answer two research questions in this evaluation:

• RQ1: How well do the fuzzers perform on each program feature in FeatureBench?
• RQ2:With the assistance of data visualization, can we confirm expected and identify unex-
pected or previously unknown fuzzing behavior associated with program features?

Hardware environment. All experiments were conducted on a server with an AMD Ryzen
Threadripper PRO 5975WX CPU (64 threads) and 128GB RAM, running Ubuntu 22.04.

5.2 RQ1: HowWell Do the Fuzzers Perform on Each Program Feature?
Tables 2 and 3 show each fuzzer’s correlation and completion rate for the control-flow and data-flow
features. The corr columns show the Spearman correlation coefficient, while the comp column
show the completion rate. We denote all statically significant correlations with an asterisk (*). Weak
correlations (between -0.3 and 0.3) with a 100% completion rate are highlighted in bold, and a
hyphen (-) indicates unavailable correlations due to insufficient data. For example, RedQueen only
detected the bug in one program for COMW, making it impossible to calculate a correlation.
5.2.1 Control-Flow Complexity. In Table 2, COMD, COMW, COMWE, and COMB columns repre-
sent the results running on the programs generated by varying the Depth, Width, Weight, and
BBranch parameters of control-flow complexity, respectively. LOOPI and RECURI represent pro-
grams generated by varying Iterations of loops and recursion, while LOOPDI and RECURDI
are their counterparts that incorporate data-flow complexity as discussed in Section 4.1. Figure 6
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Fig. 6. Mann-Whitney U test heatmap (p-value) for program pairwise runtime comparisons.

presents three heatmaps, each corresponding to a different fuzzer (AFL++, Honggfuzz, and MOpt),
to visualize the significance (p-value) of pairwise fuzzing time differences as BBranch varies.1
Depth of control-flow compexity (COMD). As shown in Table 2, the depth of control-flow

complexity (COMD) has statistically significant correlations with the performance of all fuzzers.
The correlation coefficients range from 0.287 to 0.894, with AFL++ showing the strongest positive
correlation, and EcoFuzz showing the weakest positive correlation. RedQueen, Laf-intel, and the two
variants of TortoiseFuzz also exhibit strong positive correlations. The strong positive correlation
indicates that as the depth of the control-flow complexity increases, AFL++, RedQueen, Laf-intel,
and TortoiseFuzz will be affected the most, resulting in longer runtimes, while EcoFuzz is the least
affected by this parameter of control-flow complexity. The completion rates for all fuzzers are very
high. Most fuzzers have a 100% completion rate, indicating that they can successfully find bugs
in all programs for this feature parameter. Laf-intel has the lowest completion rate of 0.75, which
timed out when D equals to 14 and 16, indicating that it does not scale as well as the other fuzzers
when the depth of control-flow complexity grows to a high level.

Width of control-flow complexity (COMW). Varying the width of control-flow complexity
(COMW) does not show statistically significant correlation with many fuzzers we evaluated. The
significant correlations are not as strong as those for COMD, with correlation coefficients ranging
from -0.024 to 0.872. This result indicates that the width of control-flow complexity does not
significantly impact most fuzzers’ performance, except for AFL++, demonstrating a strong positive
correlation of 0.872. Interestingly, RedQueen does not have available correlation data for this feature
parameter because it only successfully detected the bug in one program (W = 16). Laf-intel has a
correlation of 0.333 with a low completion rate of 0.38. These two fuzzers are designed to excel at
handling complicated hard checks, but seem to struggle when the width of the branches increases.
Weight of control-flow complexity (COMWE). Recall that as the Weight parameter in-

creases, the probability to reach the buggy branch decreases. Interestingly, in Table 2, we observe
that fuzzers take shorter time to locate bugs as the probability of the buggy branches decreases. The
correlations between Weight and fuzzing performance are mostly negative, except for Memlock
(heap), which shows a very weak positive correlation of 0.061. The negative correlation coefficients
range from -0.507 to -0.093, with AFL++ showing the strongest negative correlation. This indicates
AFL++ is the most sensitive to the increases in the probability of buggy branch. In contrast, Hongg-
fuzz and Memlock (heap) show very low correlations with this parameter, suggesting that changes
in the probability of buggy branches do not significantly affect their performance.

BBranch of control-flow complexity (COMB). In Figure 6, we use heatmaps to visualize the
results of the Mann-Whitney U Test for three fuzzers (AFL++, Honggfuzz, and MOpt) to analyze
the impact of bug location on fuzzing performance. Each heatmap shows the statistical significance

1The heatmaps of all fuzzers and all other experimental data are available in our artifact [33].
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in runtime differences for program pairs based on bug location. Pink cells denote no significant
runtime difference between program pairs. We selected AFL++, Honggfuzz, and MOpt as they
show distinct performance patterns based on bug location. For AFL++, when the bug locates in
a branch earlier in the program (below about 400 out of all 1024 branches), the performance of
AFL++ varied significantly (the green cells on the left or the upper part of Figure 6(a)); when
the bug location is in a branch that appears later in the program, AFL++ found these bugs in
similar runtime (all the pink cells on the bottom-right). MOpt result also shows that the fuzzer’s
performance is stable in programs with the later bug locations; however, MOpt’s performance in
programs with earlier bug locations is also similar (the pink cells on the top-left of Figure 6(c)),
while the performance on the programs with the later bug locations and with earlier bug locations
is significantly different. In contrast, most cells for Honggfuzz are pink (Figure 6(b)), suggesting
that bug location minimally impacts its performance. These interesting findings spawned us to
investigate the generated mutants of these fuzzers. For example, we found that the frequency
of the generated mutants of AFL++ reaching each branch is significantly different and follows
some pattern (e.g., during one period of fuzzing, the branches located around the median of the
1024 branches are visited frequently and in certain order). We believe it is worth checking the
implementation of these fuzzers to further investigate this behavior; this result gives another
example highlighting the usefulness of evaluating on benchmarks like FeatureBench.

Loops and recursions iterations (LOOPI and RECURI). Most fuzzers show strong positive
correlations with the iterations of loops and recursion (LOOPI and RECURI), with correlation
coefficients ranging from -0.140 to 0.926 for loop and from -0.116 to 0.898 for recursion (see
Table 2). EcoFuzz, MOpt, FairFuzz, RedQueen, AFL and both variants of TortoiseFuzz show strong
correlations with both loop and recursion iterations. Meanwhile, the completion rates for these
fuzzers are also very high, with a minimum of 0.8 (FairFuzz). The results indicate that the growth
of iterations in loop and recursion significantly impacts the performance of these fuzzers, leading
to longer runtimes. However, these fuzzers are still able to find bugs in most of the programs
where the bugs are located in deep loops or recursion. AFL++, Laf-intel and AFLFast show very
low correlation with the iterations of loops or recursion, at the same time the completion rates
are also quite low, indicating that these fuzzers do not effectively finding bugs that require high
iterations of loops or recursion. The two variants of Memlock also show no significant correlation
with the iterations of loops and recursion, however the completion rates are 100% for both cases,
indicating that they are good at finding bugs in programs with high iterations of loops or recursion
and are not affected by the variation of this parameter.
Loops and recursions iterations with data-flow complexity (LOOPDI and RECURDI).

The results for this group of programs show very similar trends to those of LOOPI and RECURI
with a few exceptions. AFL++ and Laf-intel are able to achieve a high completion rate (100%) for
both features with a medium correlation with the iteration parameter. This could attribute to the
fact that the experimental settings selected for iteration in this group of programs are not as high
as those in the previous group, considering that the data-flow complexity is also taken into account.
The results again suggest that the challenge for these two fuzzers lies mainly in handling programs
with high iterations of loops and recursion.
5.2.2 Data-Flow Complexity. In Table 3, MAGICS, MAGICL and MAGICD denote the programs
generated by varying the Start, Length and Depth parameters of the magic bytes check.
CHECKSUMC and CHECKSUMD represent the programs generated by varying the Count and
Depth parameters of the checksum tests.
Magic bytes (MAGICS, MAGICL, and MAGICD). As shown in Table 3, TortoiseFuzz (loop)

and AFL++ exhibit the strongest positive correlation with the Start parameter of magic bytes,
with correlation coefficients of 0.723 and 0.801, respectively. This suggests that the position of magic
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Table 3. Spearman correlation and completion rate for data-flow features.

Fuzzer MAGICS MAGICL MAGICD CHECKSUMC CHECKSUMD

corr comp corr comp corr comp corr comp corr comp

Eco 0.566* 0.900 0.921* 0.300 0.933* 0.500 0.701* 1.000 0.648* 1.000
MOpt 0.440* 0.900 0.932* 0.300 0.902* 0.500 0.489* 1.000 0.510* 1.000
AFLFast 0.648* 0.900 0.951* 0.300 0.929* 0.500 0.744* 1.000 0.759* 1.000
Fair 0.638* 0.900 0.946* 0.300 0.828* 0.600 0.771* 1.000 0.788* 1.000
Mem-S 0.048 1.000 0.887* 0.200 0.943* 1.000 0.037 1.000 0.033 1.000
Mem-H 0.124 0.900 - 0.100 0.837* 0.500 -0.017 1.000 0.000 1.000
Tort-B 0.660* 1.000 0.896* 0.200 0.921* 1.000 0.836* 1.000 0.828* 1.000
Tort-L 0.723* 1.000 0.891* 0.200 0.900* 1.000 0.814* 1.000 0.860* 1.000
Red 0.545* 0.900 -0.070 1.000 0.932* 1.000 0.650* 1.000 0.619* 1.000
Laf 0.608* 0.900 0.803* 1.000 0.935* 0.900 0.537* 1.000 0.565* 1.000
AFL 0.801* 0.900 0.950* 0.300 0.947* 0.500 0.863* 1.000 0.790* 1.000
AFL++ 0.452* 0.900 0.845* 0.200 0.921* 1.000 0.491* 1.000 0.563* 1.000
Hongg 0.691* 1.000 -0.338* 1.000 0.936* 1.000 0.223* 1.000 0.171* 1.000

bytes has a significant impact on their performance. In contrast, the two variants of Memlock show
the lowest correlation with this parameter, at 0.048 and 0.124, indicating minimal sensitivity to the
position of magic bytes. Completion rates for all fuzzers are very high, with all fuzzers achieving a
completion rate of 0.9 or higher.

The parameter Length of magic bytes shows strong correlations with the performance of most
fuzzers, with correlation coefficients ranging from -0.338 to 0.951. The completion rates for most
fuzzers are very low, indicating that most fuzzers struggle with resolving magic bytes of large
length. RedQueen and Honggfuzz perform exceptional well with a completion rate of 1.0 and low
correlation coefficients, indicating that the increase of length of magic bytes does not significantly
impact their performance. Laf-intel also achieves 100% completion rate, but with a high correlation
of 0.803, indicating that long magic bytes will lead to longer running time for Laf-intel; however, it
still is able to resolve the long magic bytes to trigger the crash.

TheDepth parameter of magic bytes shows strong correlations with fuzzer performance, ranging
from 0.828 to 0.947. Memlock (stack), TortoiseFuzz (loop and bb), RedQueen, AFL++, and Honggfuzz
achieve a 100% completion rate, indicating that these fuzzers perform better on programs with
deeply nested magic bytes than others.
Checksum tests (CHECKSUMC and CHECKSUMD). The Count and Depth parameters

of checksum tests show similar correlation strengths with fuzzing performance, with coefficients
ranging from -0.017 to 0.863 for Count and from 0 to 0.860 for Depth. All fuzzers achieve a 100%
completion rate for both parameters. Memlock (stack and heap) and Honggfuzz show very low
correlation coefficients for both, indicating that the number and nesting level of checksum tests do
not significantly impact their performance.

5.3 RQ2: Analyzing Fuzzing Behavior Dependent on Program Features
In this section, we inspect the fuzzers’ performance in each program feature to observe behaviors
that are expected, unexpected or previously unknown based on the commonwisdom in the literature
and the technical descriptions of the fuzzers. For each feature parameter, we collected the median
runtime of each fuzzer over the 20 trials, and created line plots to illustrate the performance trends
of each fuzzer with respect to these parameters. We summarize the observations across fuzzers
in Table 4. An observation is labeled as expected (EP) if it aligns with common wisdom in the
literature and/or explicitly claimed in the corresponding paper(s), unexpected (UE) if it contradicts
prior claims, and previously unknown (PU) if it is a new finding from our experiments that is not
explicitly stated in the literature.
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Table 4. Observations on program features. We denote the number of conditional branches as C1, execution
probability of conditional branches as C2, loops and recursions as C3, loops and recursions with data
constraints as C4, magic bytes as D1, checksum test as D2, and nested magic bytes and checksum test as D3.

FID Fuzzer Observation State

C1
AFL++ Perform better on high-width programs than high-depth programs. PU
Laf-intel, RedQueen Perform better on high-depth programs than high-width programs. PU
Honggfuzz Perform better on low-width/depth programs. PU

C2
AFL++, Laf-intel, RedQueen More sensitive to bug location changes and the weight of buggy branches. PU

Honggfuzz Less sensitive to bug location changes and the weight of buggy branches
and maintain better performance. PU

Fuzzers with low variance in fuzzing
time (e.g., EcoFuzz, AFLFast) Perform more efficiently on programs with lower buggy branch weight. EP

C3, 4

Memlock Perform excellently with higher loop/recursion iterations and data constraints. EP
TortoiseFuzz Perform worse on programs with loops/recursions. UE
Honggfuzz More sensitive to the introduction of data constraints. PU
Fuzzers other than Memlock Perform worse on programs with higher loop/recursion iterations. PU

D1, 3

AFL, AFLFast, EcoFuzz, Fairfuzz Perform worse on programs with longer input strings. EP
AFL, AFLFast, EcoFuzz, MOpt Perform worse on programs with deeper nested checks. EP
Fairfuzz Perform better on programs with deeper nested checks. EP
Memlock (stack), TortoiseFuzz, Honggfuzz Perform better on programs with longer input strings. PU
Memlock (stack), Honggfuzz Perform excellently on programs with deeper nested checks. PU
Memlock (heap) Perform worse on programs with deeper nested checks. PU
RedQueen, Laf-intel Perform excellently/well where bug is guarded by long magic string. EP
Honggfuzz Perform excellently where bug is guarded by long magic string. PU
Fuzzers other than RedQueen,
Laf-intel, and Honggfuzz Perform worse where bug is guarded by long magic string. EP

D2, 3 RedQueen Perform well with high counts and deep nesting of checksums. EP
Honggfuzz, Memlock Perform excellently with high counts and deep nesting of checksums. PU

5.3.1 Control-Flow Complexity.
Number of conditional branches. Figures 7(a) and 7(b) show the median runtime of each

fuzzer on programs with varying Width and Depth, respectively. The x-axes in the figures show
the values of the respective parameters and y-axes show the median time each fuzzer took to
detect the injected bug. We observe that most fuzzers maintain a relatively stable runtime across
different widths and depths. Laf-intel and RedQueen timed out on the programs with width greater
than 16 and 96, respectively, suggesting that these fuzzers struggle with handling programs that
contain a high number of branch conditions. However, RedQueen did not time out on any programs
with increasing depth, and Laf-intel only timed out on the program with depth 12 or greater,
indicating that these two fuzzers perform better when exploitation is more needed than exploration.
Honggfuzz timed out at the width of 256 and was outperformed by all other fuzzers at the depth of
16 (note that y-axis in Figure 7(b) was customized to accommodate the high runtime of Honggfuzz.).
Its performance on both depth and width experiments suggests that it struggles when the control-
flow complexity increases to a certain level, indicating it may not be the best choice for programs
with high control-flow complexity. AFL++ maintains the best performance on programs with a
larger width, while it performed worse than most fuzzers as the depth of the program increases.
Execution probability of conditional branches. Figure 7(c) shows the median runtime of

each fuzzer on programs with varying weight of the buggy branch. The results show that fuzzers
tend to find the bug faster when bug is located in the branch that is more infrequently executed.
AFL++, Laf-intel, and RedQueen show a larger increase in runtime than other fuzzers when the
weight of the buggy branch increases (smaller Weight), indicating that they are more sensitive to
the execution probability of the branches, while Honggfuzz maintains an excellent performance
across all weights, which align with the trends observed in Figure 7(d). We further compared the
region coverage and the number of mutants generated to trigger the bug across different Weight
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Fig. 7. Runtime over FeatureBench programs with varying width (a), depth (b), buggy branch (c), weight
(d), loop iteration (with data constraints) (e) and (g), recursion iteration (with data constraints) (f) and (h).

parameters. For fuzzers with low variance in fuzzing time, we observed a significant decrease in
the number of mutants generated and coverage as the buggy branch’s weight decreases (larger
Weight). This suggests that, despite the small variance in runtime, other performance metrics
indicate improved fuzzing efficiency. Specifically, these fuzzers are able to locate the bug with fewer
mutants and lower coverage when the bug is in an infrequently executed branch. This observation
validates the claimed improvement of fuzzers like AFLFast and Fairfuzz, which prioritize seeds that
cover infrequent paths and branches.

Figure 7(d) shows the median runtime of each fuzzer on programs where bugs locate at different
branches. Honggfuzz maintains a very low increase rate of runtime across different branches,
indicating that it is less sensitive to the bug’s location. AFL++, Laf-intel, and RedQueen exhibit the
most fluctuating runtimes, suggesting a higher sensitivity to the changes in bug location.
Loops and recursions. Figures 7(e) and 7(f) show the median runtime of each fuzzer on

programs with varying loop iterations and recursion iterations. The results show that most fuzzers
exhibit similar performance trends and remain relatively stable for iterations up to 100. However, a
significant increase in runtime is observed when iterations reach 500 or 1,000. Memlock (stack and
heap) quickly finds bugs in all programs, even when loop and recursion iterations reach 100,000,
while other fuzzers begin to struggle. Its performance aligns with the claim that memory-based
guidance is effective in finding bugs in programs with vulnerable control-flow features like loops
and recursion, which are often associated with high memory consumption. However, TortoiseFuzz
(loop and bb) does not perform as effectively as expected. This may be attributed to its design, which
prioritizes the presence of error-prone structures, such as loops, to guide its fuzzing process but
does not account for the number of iterations. Consequently, TortoiseFuzz may miss opportunities
to explore deeper loop iterations, limiting its effectiveness in finding bugs residing in high-iteration
loops or recursions. Honggfuzz performs well with small number of loop or recursion iterations but
experiences drastic performance drops, leading to timeouts as iterations increase to 10,000. AFL++,
Laf-intel, and AFLFast do not effectively support high iterations as they time out at early stages of
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Fig. 8. Fuzzer runtime over FeatureBench programs with varying start index (a), depth (b), length (c) of
magic bytes, count (d), and depth (e) of checksum tests.

the experiments, at the iteration of 50 or 1000. Such performance aligns with the limitation that
these traditional coverage-based grey-box fuzzers do not have awareness about memory-related
information, thus struggle in finding bugs in programs with high loop and recursion iterations.

Loops and recursions with data constraints. Figures 7(g) and 7(h) show the median runtime
of each fuzzer on programs with varying loop and recursion iterations, respectively, incorporating
data constraints. The y-axes in both figures are customized to accommodate high runtime of
Honggfuzz, showing linear scale below 600 and logarithmic scale above 600. We observe that most
fuzzers exhibit a significant runtime increase when the number of iterations reaches 100, 150, or
200, after which their perform remains stable. TortoiseFuzz (loop and bb) performed worse than
AFL++, RedQueen and Laf-intel, and even further behindMOpt, Fairfuzz, AFL, AFLFast and EcoFuzz.
Interestingly, Honggfuzz demonstrates unstable performance as iteration increases, causing large
runtime fluctuations. Memlock (stack and heap) consistently maintains the best performance across
all programs with data constraints, indicating that memory-based guidance is highly effective
when bugs are guarded by deeply nested loops or recursion, where memory consumption increases.
In these cases, traditional coverage-guided fuzzers are less effective compared to Memlock. Both
Memlock and TortoiseFuzz are designed to address control-flow features like loops and recursion.
TortoiseFuzz leverages error-prone structures (e.g., loops) to guide its fuzzing process. However, its
performance falls short in handling high iteration complexities, indicating limitations in managing
challenges posed by large number of iterations, where Memlock excels.
5.3.2 Data-Flow Complexity.
Magic bytes. Figure 8(a) shows median runtime of fuzzers on programs with varying start

indexes of magic bytes with a single character. We observe that most fuzzers timed out on programs
with start index of 80, indicating the upper bound limits of these fuzzers in handling long input
strings. AFL, AFLFast, EcoFuzz, Fairfuzz do not perform as well as Laf-intel, Redqueen and AFL++
on programs with magic bytes locating at far index of inputs, showing that these fuzzers are less
effective at handling long input strings. TortoiseFuzz, Memlock (stack) and Honggfuzz were able to
make it to the most difficult test case with magic character locating at the 90th index of the input
string. Memlock (stack) is the most effective fuzzer in this experiment.

Figure 8(b) shows median runtime of fuzzers on programs with varying levels of nesting magic
byte checks. AFL, AFLFast, EcoFuzz and MOpt performed worse than Laf-intel, Redqueen and
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AFL++ on programs with nesting magic byte checks. EcoFuzz shows worse ranking than previous
experiments, suggesting that EcoFuzz is less effective at finding bugs that locate in deep path
guarded by nesting hard checks. However, the ranking of Fairfuzz improves, which fits the claim
that Fairfuzz prioritizes rare branches while fuzzing. TortoiseFuzz also ranks better, while Memlock
(stack) and Honggfuzz still maintain the best performance across all programs in this group.
Interestingly, the other variant of Memlock, Memlock (heap), timed out at the nesting level of 5,
suggesting that stack memory usage is more effective than heap memory usage for this feature.
Figure 8(c) shows the median runtime of each fuzzer on programs with different lengths of

magic strings. Most fuzzers were unable to detect bugs in programs with a magic string length of 3.
Only three fuzzers, Honggfuzz, RedQueen, and Laf-intel, successfully found bugs in all benchmark
programs. RedQueen and Honggfuzz performed particularly well on programs where the bug was
guarded by a very long magic string (length of 10). Laf-intel was relatively slow compared to the
other two. Memlock-heap had the worst performance, only making it past the first program. This
suggests that while using memory consumption to guide fuzzing process can be effective for finding
bugs in programs with memory error-prone features, it struggles to handle complex constraints.

Checksum test. Figures 8(d) and 8(e) illustrate the median runtimes of each fuzzer on programs
with varying counts and depths of checksum tests, respectively. Most fuzzers experience a steady
runtime increase as the count and depth of checksum tests grow. Notably, RedQueen manages
high counts and deep nesting effectively, aligning with its design for handling complicated (nested)
hard checks. However, Honggfuzz achieved the best performance overall, with Memlock (stack
and heap) performing the second best, indicating their strong handling of complex checksum tests
despite not being specifically tailored for such tasks.
6 Threats to Validity
Our work has several potential threats to validity. First, the papers we reviewed to extract program
features are not exhaustive. We focused on grey-box fuzzing papers published within the last
three years and on the most cited fuzzers from earlier years. The extracted features are based on
the capabilities of current fuzzing techniques and do not account for future advancements that
may introduce new features or surpass the capabilities of existing techniques. As the first step
towards a feature-based fuzzing benchmark, we have developed and experimented with several
features that have resulted in important insights. Second, the programs in FeatureBench may
not fully capture all program behaviors related to control-flow and data-flow that can impact fuzzing
performance, which could limit the generality of our findings. Third, the generated programs are
small and synthetic, and do not comprehensively represent the real world faults. Therefore, these
programs should be used in combination with other real-world datasets for a useful evaluation.
7 Related Work
Fuzzing evaluation. Klees et al. [17] and Böhme et al. [4] analyzed the influence of various aspects
of experimental setups and provided recommendations for more rigorous fuzzing evaluations.
Schloegel et al. [42] examined the extent to which the guidelines proposed by Klees et al. [17]
were followed in practice and introduced further refinements. SENF [35] explored the impact of
different evaluation parameters (e.g., the number of repetitions and runtime) and external factors
(e.g., compiler settings) on overall fuzzer performance. Fioraldi et al. [10] investigated the effect of
internal fuzzing mechanisms, such as power schedules and search strategies, on fuzzer effectiveness.
While these studies offer new insights into fuzzer performance, they do not account for how program
characteristics might influence fuzzer efficiency. Recently, Kummita et al. [18, 20] proposed to
evaluate fuzzers by visualizing the internals of fuzzing, which may complement our work.

Program features and fuzzing.Wolff et al. [48] evaluated fuzzers with respect to four program
properties. They concluded that only the program size is relevant in influencing the performance of
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fuzzing. LEOPARD [8] used program metrics to identify potential vulnerable functions in programs
to support manual audits and fuzzing. They use complexity and vulnerability metrics to compute
vulnerability scores of each function. These approaches do not focus on generating programs based
on the configurable program features. Zhu et al. [56] generated corpora for fuzzing evaluation
based on search-hampering features, which is the closest to our work. They extracted real-world
program structures from GitHub, inserted bug contexts into these structures, and added extra code
to ensure compilability. To the best of our knowledge, the corpora generated by Zhu et al. [56] are
not publicly available, leaving the statistics of the generated programs unknown. Compared to
their approach, our method generates synthetic programs based on configurable program features.
Our benchmark offers a more comprehensive set of features and implements each feature with
finer granularity. We design quantifiable parameters to systematically control the strength of each
feature from multiple aspects (e.g., controlling magic bytes by start index, length, and nesting level).
This flexibility enables precise program construction and facilitates a detailed analysis of each
feature’s impact on fuzzing performance. Additionally, we evaluated 11 fuzzers on our benchmark,
offering a more extensive comparison of performance across different fuzzers.
Program feature-based benchmarking. Several works have generated feature-based bench-

marks in other software applications. Kummita et al. [19] created a microbenchmark of 49 test
programs across 13 Python language features to evaluate Python call graph generation algorithms.
Reif et al. [39] created a benchmark based on Java language features that contains 122 test cases
across 23 features to evaluate Java call graph analyses. DroidBench [1] is a set of microbench-
mark programs grouped into 13 categories, designed to evaluate taint analysis tools for Android
applications. The RERS suite [40] is another similarly constructed benchmark suite designed for
model-checking tools, aiming to develop a set of challenges in formal methods. It incorporates
scalable complexity based on known properties during program generation process, producing
small, medium and large programs for benchmarking [14]. Our work generates feature-based bench-
marks for fuzzing which also incorporates scalable complexity based on extracted program features.
Unlike RERS suite, we do not generate programs of varying sizes but instead provide parameters
to control the feature strength during benchmark generation. The varying parameter strengths
allowed us to directly assess the impact of corresponding features on fuzzing performance.

8 Conclusions and Future Work
In this paper, we present a novel benchmark to evaluate fuzzers based on configurable program
features. By reviewing 25 recent grey-box fuzzing papers, we extracted 7 program features associated
with control-flow and data-flow that can impact fuzzer performance. Based on these features, we
designed 10 parameters that allow fine-grained control over program construction based on the
strengths of the features. FeatureBench consists of 153 programs, and we evaluated 11 fuzzers
using this benchmark. Our findings show that fuzzer performance varies significantly depending
on program features and the strength of those features, highlighting the importance of considering
program characteristics in fuzzing evaluation. Moving forward, we plan to perform static analysis
to extract additional program features from real-world programs, and expand our benchmark to
include features representing a broader range of real-world scenarios.

9 Data Availability
WehavemadeFeatureBench, experimental data, and visualizations available in our artifact [33].
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